The secretions from serial defensive glands of the Austrian diplopod Allajulus dicentrus (Julidae, Cylindroiulini) were extracted and analyzed by means of gas chromatography - mass spectrometry. In adults, 13 components from two chemical classes were detected: 1) The common juliform benzoquinones were represented by four compounds (2-hydroxy-3-methyl-1,4-benzoquinone, 2-methoxy-3-methyl-1,4-benzoquinone, 2,3-dimethoxy-1,4-benzoquinone, and 2,3-dimethoxy-5-methyl-1,4-benzoquinone). From this series, 2-methoxy-3-methyl-1,4-benzoquinone was most abundant, comprising about 40 % of the whole secretion. 2) All remaining compounds were identified as aliphatic (E)-alkenals [(E)-2-heptenal, (E)-2-octenal, (E)-2-nonenal, (E)-2-decenal)] along with their corresponding alcohols. (E)-2-Octenal was most abundant, roughly accounting for another 35 % of the secretion. In juveniles, different stages in the ontogenetic development of the secretion were observed, with early instars (stadium III and IV) exclusively containing the benzoquinone fraction. Alkenols and alkenals were added in later instars (stadium V and VI), with secretions of stadium VI-juveniles being already similar to those of adults. Representatives of Spirostreptida, Spirobolida, and Julida traditionally have been considered to produce benzoquinonic secretions only ("quinone millipedes"), and information on secretion components from other chemical classes is still scarce. We here provide evidence for the participation of non-quinonic compounds in the defensive exudates of the Cylindroiulini. The occurrence of additional, non-quinonic compounds in certain species within a chemically homogenous, benzoquinone-producing taxon indicates the rapid adoption of novel exocrine compounds, possibly in order to meet the demands in a changed ecological environment.