Device stability in an organic light emitting devices (OLEDs) with a solution-processed mixing sing -NPD), host materials tris-(8-hydroxy-quinoline) aluminum (Alq 3 ), electron transport material 2,5---bipyridyl))-1,1-dimethyl-3,4-diphenylsilole (PyPySPyPy) and dope material 5,6,11,12-tetraphenylnaphthacene (rubrene) was investigated. Maximum power efficiency of 5.6 lm/W was obtained by optimizing the mixing ratio of -NPD: Alq 3 : rubrene:PyPySPyPy = 30:50:1:20. Luminance and power efficiency of mixed single layer device was largely improved compared to tri-layer heterojunction device. Lifetime testing demonstrated that the mixed single layer device exhibited longer operational lifetime of 340 hours, which was three times longer than the 105 hours for tri-layer device. Origin of improved device stability is analyzed by evaluating the current-voltage characteristics, dark sports growth and the polarized optical microscope images of mixed organic films.