Quantitative analysis of cytochrome P450 (CYP) patterns of cells and tissues is an important aspect in toxicological and pharmacological research as this group of enzymes is largely involved in the metabolism of toxic compounds and drugs. Here we present a method for the multi-parametric and simultaneous quantitative determination of several cytochromes P450 in liver microsomes of untreated and inducer treated rats. The method is based on the binding of specifically lanthanide labelled antibodies to electrophoretically separated and blotted CYP proteins and their subsequent identification and quantification by LA-ICP-MS. CYP1A1, CYP2B1, CYP2C11, CYP2E1 and CYP3A1 were simultaneously quantified and the patterns between microsomal samples were compared. Microsomes of rats treated with 3-methylcholanthrene, phenobarbital and dexamethasone showed increased levels of CYP1A1, CYP2B1 and CYP3A1, respectively. These results coincide with data obtained by independent methods for CYP quantification, i.e. ethoxyresorufin O-deethylase activity for CYP1A1 and pentoxyresorufin O-depentylase for CYP2B1. The presented method is useful for multi-parametric CYP profiling and has further large potential with respect to the number of analysed parameters/proteins and sensitivity.