Insulin is susceptible to fibrillation, a misfolding process leading to well ordered cross- assembly. Protection from fibrillation in  cells is provided by sequestration of the susceptible monomer within zinc hexamers. We demonstrate that proinsulin is refractory to fibrillation under conditions that promote the rapid fibrillation of zinc-free insulin. Proinsulin fibrils, as probed by Raman microscopy, are nonetheless similar in structure to insulin fibrils. The connecting peptide, although not well ordered in native proinsulin, participates in a fibril-specific -sheet. Native insulin and proinsulin exhibit similar free energies of unfolding as inferred from guanidine denaturation studies: relative amyloidogenicities are thus not correlated with global stability. Strikingly, the susceptibility of proinsulin to fibrillation is increased by scission of the connecting peptide at single sites. We thus propose that the connecting peptide constrains a large scale conformational change in the misfolded protein. A tethering mechanism is proposed based on a model of an insulin protofilament derived from electron-microscopic image reconstruction. The proposed relationship between cross- assembly and protein topology is supported by studies of single-chain analogs (mini-proinsulin and insulin-like growth factor I) in which foreshortened connecting peptides further retard fibrillation. In addition to its classic function to facilitate disulfide pairing, the connecting peptide may protect  cells from toxic protein misfolding in the endoplasmic reticulum.