Radial velocity measurements, BVR C photometry, and high-resolution spectroscopy in the wavelength region from blue to near-infrared are employed in order to clarify the evolutionary status of the carbon-enhanced metal-poor star HD 112869 with a unique ratio of carbon isotopes in the atmosphere. An LTE abundance analysis was carried out using the method of spectral synthesis and new self-consistent 1D atmospheric models. The radial velocity monitoring confirmed semiregular variations with a peak-to-peak amplitude of about 10 kms 1 and a dominating period of about 115 days. The light, color, and radial velocity variations are typical of the evolved pulsating stars. The atmosphere of HD 112869 appears to be less metal-poor than reported before, [Fe/H] = −2.3 ± 0.2 dex. Carbon-to-oxygen and carbon isotope ratios are found to be extremely high, C/O 12.6 and 12 C/ 13 C 1500, respectively. The s-process elements yttrium and barium are not enhanced, but neodymium appears to be overabundant. The magnesium abundance seems to be lower than the average found for CEMP stars, [Mg/Fe] < +0.4 dex. HD 112869 could be a single low-mass halo star in the stage of asymptotic giant branch evolution.