Thirty maize genotypes were characterized for their nutritional, antinutritional and nutraceutical traits for identification of elite germplasm rich in beneficial characteristics. Starch, proteins, lipids, tryptophan, lysine, β-carotene, condensed tannins, protease inhibitor, phytic acid, total phenols, flavonols, o-dihydroxy phenols and DPPH radical scavenging activity were determined in grains of all the genotypes. Correlation coefficient among the various parameters showed that lysine, total phenols, flavonols and o-dihydroxy phenols were negatively correlated with phytic acid content of the genotypes. This showed that the nutritional and the nutraceutical potency of genotypes, rich in lysine and phenolic compounds, is further propounded by a reduction of phytic acid content in them. On the basis of various constituents, the genotypes were divided into three groups. Group-A genotypes had high to moderate levels of both nutritional and nutraceutical traits. Group-B included those genotypes that exhibited high to moderate levels of either nutritional or nutraceutical traits. Group-C was constituted of genotypes that had lower levels of both nutritional and nutraceutical traits. Agglomerative hierarchical clustering showed that the D subcluster of MC-2 was chiefly comprised of genotypes that had high to moderate levels of both nutritional and nutraceutical traits. It may be concluded that CML134, CML266, TOO14601, LM11, CML264, CML321, SE563, LM10, LM18, LM14 and CML32 were nutritionally rich nutraceutical genotypes having low antinutrient potency.