SUMMARYThere is an urgent need for the discovery and development of new antitubercular agents that target novel biochemical pathways and treat drug-resistant forms of the disease. One approach to addressing this need is through high-throughput screening of drug-like small molecule libraries against the whole bacterium in order to identify a variety of new, active scaffolds that will stimulate additional biological research and drug discovery. Through the Molecular Libraries Screening Center Network, the NIAID Tuberculosis Antimicrobial Acquisition and Coordinating Facility tested a 215,110-compound library against M. tuberculosis strain H37Rv. A medicinal chemistry survey of the results from the screening campaign is reported herein.
CONFLICT OF INTEREST STATEMENTCompeting interests: Dr. Goldman is a NIAID staff member who either in the past or currently provides oversight for the project that generated the data used as the basis for this work.Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
NIH Public AccessAuthor Manuscript Tuberculosis (Edinb) The MLSCN was established in 2005 as a pilot program to assemble a large library of biologically relevant small molecules and make them available through a network of HTS laboratories to researchers worldwide through a competitive assay submission process. Acceptance of the TAACF assay into the MLSCN program made available the unique resources of the NIH Small Molecule Repository (SMR), significantly expanding the spectrum of molecules tested for activity against TB. For this screen, a 215,110-compound library from the SMR was examined for anti-TB activity using the assay described previously, 7 with the only change to the screening protocol being the elimination of the polyethylene incubator bags, resulting in the identification of a number of novel chemical scaffolds. Moreover, even for classes of compounds identified earlier during testing of the NIAID ChemBridge library, 7 additional examples emerged that further clarified the structure-activity picture. Since the compounds in the SMR have been examined in scores of diverse assays undertaken by the MLSCN, and the results published on the NIH PubChem website, 8 another motivation for conducting the MLSCN campaign is the ability to correlate antituberculosis activity of the hits with other biological activities that these compounds may possess, potentially providing information about possible mechanisms of action or toxicity. The raw screening results upon which the structural analysis below is based are now publicly available on PubChem (assay AIDs 1332 and 1626).
MATERIALS ...