In this research work, dynamic, mechanical, and thermophysical properties of untreated and 5, 7, and 10 wt % styrene treated tea dust (TD):polypropylene (PP) composites prepared by injection‐molding machine were elaborated. There were distinctive and significant improvement observed in mechanical properties (tensile strength, tensile modulus, and elongation at break), physical analysis (water swelling), dynamic mechanical properties (storage modulus, loss modulus, and tan δ), and thermal behavior and surface morphological properties of styrene treated TD:PP (40:60) composites as compared to that of untreated one. The tensile strength (from 7.00 to 9.95 MPa), tensile modulus (from 350 to 715 MPa), storage modulus (from 8500 to ∼10,500 MPa), and loss modulus (from ∼150 to ∼200 MPa) increased on 10 wt % styrene treatment of TD over the untreated TD:PP (40:60) composites. The styrene treated TD:PP (40:60) composites behaved as more elastic than their pure counterpart. Styrene treated TD:PP (40:60) composites were more thermally more stable (85 °C difference) as compared to virgin PP. Overall, this research also indicates the use of TD waste. An improvement in dispersion of styrene treated TD particles in PP was also observed in the preparation of the PP composites due to good compatibility of styrene with PP. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017, 134, 44750.