Manganese dioxide (MnO2) nanoparticles were modified by graphitic carbon nitride (GCN) and polylpyrrole (Ppy) to enhance their electrochemical performance. The surface influence, crystalline structure, and electrochemical performance of the Ppy/GCN/MnO2 material were characterized and compared with those of pristine MnO2. It is found that surface modification can improve the structural stability of MnO2 without decreasing its available specific capacitance. The electrochemical properties of synthesized Ppy/GCN/MnO2 electrode were evaluated using cyclic voltammetry (CV) and AC impedance techniques in 5 M KOH electrolyte. Specific capacitances of 486, 815, 921, and 1377 F/g were obtained for MnO2, Ppy/MnO2, GCN/MnO2, and Ppy/GCN/MnO2, respectively, at 5 A/g. This improvement is attributed to the synergistic effect of GCN and Ppy in the Ppy/GCN/MnO2 electrode material. The Ppy/GCN/MnO2 electrode in KOH has average specific energy and specific power densities of 172 Wh kg−1 and 2065 W kg−1, respectively. Only 2 % of the capacitance’s initial value is lost after 10,000 cycles. The resulting Ppy/GCN/MnO2 nanocomposite had very stable and porous layered structures. This work demonstrates that Ppy/GCN/MnO2 nanomaterials exhibit good structural stability and electrochemical performance and are good materials for supercapacitor applications.