Zirconium alloys are commonly used as a cladding material for fuel elements in nuclear reactors. This application is connected with zirconium alloy’s good resistance to water corrosion and radiation resistance under normal working conditions. In the case of severe accident conditions, the possibly very fast oxidation of zirconium alloys in steam or/and air atmosphere may result in the intense generation of hydrogen and explosion of the hydrogen oxide mixture. The development of a solution to minimize the aforementioned risk is of interest. One of the actual concepts is to improve the oxidation resistance of Zr alloy cladding with protective coatings. This study aimed to develop, form, and investigate new coatings for zirconium alloy Zry-2. Multi-elemental Physical Vapour Deposition (PVD) coatings with Cr, Si, and Zr were considered for Institute of Nuclear Chemistry and Technology) INCT as corrosion protective coatings for nuclear fuel claddings. Heat treatment at 850–1100 °C/argon, air oxidation processes at 700 °C/1–5 h, and a long-term corrosion test in standard conditions for Pressure Water Reactor (PWR) reactors (360 °C/195 bar/water simulating the water used in PWR) were carried out. Initial, modified, and oxidized materials were characterized with Scanning Electron Microscopy (SEM) (morphology observations), Energy Dispersive Spectroscopy (EDS) (elemental composition determination), and X-ray Diffraction (XRD) (phase composition analysis). Slower oxidation processes and a smaller oxidation rate, in the case of modified material investigations, were observed, as compared with the unmodified material. The obtained results displayed a protective character against the oxidation of formed layers in the defined range of parameters in the process.