SynopsisA new and simple instrument for measurement of elongational flow response of polymer melts in constant uniaxial extension rate experiments is described. Quantitative stress development data are presented for a series of low-density polyethylene (LDPE), high-density polyethylene (HDPE), polystyrene (PS), polypropylene (PP), and poly(methy1 methacrylate) (PMMA) melts. For small elongation rate E, linear viscoelastic behavior was observed; while for large E, LDPE and PS showed exponential stress growth, while HDPE and PP showed only linear stress growth. Stress relaxation experiments were carried out for several of the same melts in the instrument. Elongation to break and mechaniims of f i i e n t failure were studied. HDPE and PP have a tendency to neck and exhibit ductile failure, while a t high E, LDPE and PS seem to show cohesive fracture. The elongational flow stress response data were compared to predictions of nonlinear viscoelastic fluid theory, specifically the Bogue-White formulation. The qualitative differences in responses of the melts studied were explained in terms of different dependences of the effective relaxation times on deformation rate and, more specifically, on values of the a parameter in the theory.