A series of polyurethane (PU) green composites have been synthesized with varying amounts, namely 0, 2, 4, 8, and 12 wt% of soya protein isolate (SPI) by two methods. In the first method, castor oil (CO) and toluene-2,4-diisocyanate (TDI) molar ratio is CO/TDI : 1/1 with varying amounts of the SPI content. In the second method, the molar ratio of TDI is calculated by considering the -OH groups of both CO and SPI. We made the assumption that, in the first method, SPI acts as a filler and in the second method SPI is one of the coreactants in PU formation. The mechanical properties of the fabricated PU/SPI green composites are evaluated; and it is found that the tensile strength increases up to 8 wt% of SPI, and a further increase in SPI leads to reduction in the tensile strength. The small angle x-ray scattering profiles have been used to evaluate the arrangement of amorphous (A) and crystalline (C) regions in the PU/SPI green composites in a scale of about 700 Ǻ by considering the variation in scattered intensity with scattering angles ranging from 0.3°to 1.5°. For this purpose, a linear paracrystalline model is used. In this study, the exponential distribution of phase lengths gives a good agreement between the measured and computed data on the basis of a linear paracrystal model. It is observed that there are significant changes in the distribution of phase lengths due to changes in the composition and chemical structure of PU/SPI composites obtained by methods 1 and 2. C 2015 Wiley Periodicals, Inc. Adv Polym Technol 2016, 35, 21526; View this article online at wileyonlinelibrary.com.