Cross‐conjugated quinoid betaines 4 (2,5‐bis(alkoxycarbonyl)‐3,6‐dioxo‐4‐(1‐pyridinium‐1‐yl)cyclohexa‐1,4‐dien‐1‐olates; Liebermann betaines) were synthesized from 2,5‐dichloro‐3,6‐dioxocyclohexa‐1,4‐diene‐1,4‐dicarboxylates (2) and pyridines in acetone containing H2O. Their structure was secured by NMR spectroscopy and by X‐ray diffraction analysis of 4f (alkoxy = EtO, pyridine = 4‐Me2N–C5H4N). Betaines 4 show comparatively high reactivity towards nucleophiles as a consequence of their cross‐conjugated character. Betaine 4a and hydroxy‐3,4‐methylenedioxybenzene (sesamol) condense to give a pyridinium quinolate salt 14 which has a bifurcate H‐bond from a pyridinium N+–H donor to both carbonyl (C=O) and olate (C–O−) acceptors in the solid state. Betaine 4b hydrolyzes in aqueous solution to give diethyl 2,5‐dihydroxy‐3,6‐dioxocyclohexa‐1,4‐diene‐1,4‐dicarboxylate (11) as a pyridinium salt, or as polymeric zinc(II) complex of the dianion of 11 in the presence of ZnCl2. Dihydroxyquinone 11 was analytically differentiated from its independently prepared hydroquinone form, diethyl 2,3,5,6‐tetrahydroxyterephthalate (12), by NMR analysis in solution and X‐ray crystal structure determination of both compounds.