For the first time tripeptides, Z-AA(1)-Xaa-AA(3)-OMe (AA(1) and AA(3) = Gly or Aib, Xaa = 2Pmg and 2Pyg) were prepared containing alpha-methyl-alpha-(2-pyridyl)glycine (2Pmg) and alpha-(2-pyridyl)glycine (2Pyg) by solid-phase Ugi reaction. These results clearly indicate that for the preparation of tripeptides containing an amino acid with a pyridine ring, the solid-phase Ugi reaction is very useful.NMR analysis clarified that 2Pmg-containing tripeptides adopt a unique conformation with an intramolecular hydrogen bond between 2Pmg-NH and the pyridine nitrogen. However, in the case of Z-Gly-2Pyg-Gly-OMe, the intramolecular hydrogen bonding between 2Pyg-NH and the pyridine nitrogen was not observed, whereas Z-Aib-2Pyg-Aib-OMe adopts a unique conformation with an intramolecular hydrogen bond between 2Pyg-NH and a pyridine nitrogen. Conformational analysis of the tripeptides, Z-AA(1)-Xaa-AA(3)-OMe (AA(1), AA(3) = Gly or Aib, Xaa = alpha,alpha-di(2-pyridyl)glycine (2Dpy), alpha-phenyl-alpha-(2-pyridyl)glycine (2Ppg), 2Pmg and 2Pyg), clarified that when an alpha,alpha-disubstituted glycine with a 2-pyridyl group at an alpha-carbon atom is introduced into any peptide, an intramolecular hydrogen bond between a pyridine nitrogen and an amide proton is formed and conformational mobility of the peptide backbone is restricted.