Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Argemone mexicana L. (Papaveraceae), a tropical annual weed, is known to be phytotoxic to many crop species. This study was designed to examine the possible impact of A. mexicana on root‐infecting fungi, changes in fungal community structure and the growth of tomato. A. mexicana decaying shoots in soil provided a marked decrease in the infectivity of Fusarium solani and Rhizoctonia solani but Macrophomina phaseolina remained unaffected. Plant height and shoot growth of tomato plants increased markedly though high concentration of A. mexicana (5% w/w) was deleterious to tomato plants. General species diversity of soil fungal communities increased in the amended soils over the controls and greater increase in diversity occurred at higher concentrations of decaying A. mexicana. Likewise, equitability and richness components of diversity increased in treatments compared to controls but declined with increasing sampling period. Aspergillus nidulans, Cephaliophora irregularis, Drechslera halodes, Paecilomyces lilacinus and Trichoderma viride were isolated exclusively from the amended soils. Aqueous extract of A. mexicana when applied in soil greatly suppressed all three of the above root‐infecting fungi, and at lower concentration actually enhanced plant growth. The influence of different levels of N‐fertilization with NH4NO3 on the modification of the effect of decaying A. mexicana on root‐infecting fungi was also investigated. N‐fertilization to some extent alleviated the phytotoxicity to tomato plants while suppressing the root‐infecting fungi. A. mexicana in conjunction with Pseudomonas aeruginosa, a plant growth‐promoting rhizobacterium, significantly suppressed root‐infecting fungi with concomitant increase in plant growth. Whereas P. aeruginosa was reisolated from the rhizosphere and inner root tissues of tomato, its population slightly declined in the amended soil but not to an extent that could reduce the biocontrol and growth promoting potential of the bacterium.
Argemone mexicana L. (Papaveraceae), a tropical annual weed, is known to be phytotoxic to many crop species. This study was designed to examine the possible impact of A. mexicana on root‐infecting fungi, changes in fungal community structure and the growth of tomato. A. mexicana decaying shoots in soil provided a marked decrease in the infectivity of Fusarium solani and Rhizoctonia solani but Macrophomina phaseolina remained unaffected. Plant height and shoot growth of tomato plants increased markedly though high concentration of A. mexicana (5% w/w) was deleterious to tomato plants. General species diversity of soil fungal communities increased in the amended soils over the controls and greater increase in diversity occurred at higher concentrations of decaying A. mexicana. Likewise, equitability and richness components of diversity increased in treatments compared to controls but declined with increasing sampling period. Aspergillus nidulans, Cephaliophora irregularis, Drechslera halodes, Paecilomyces lilacinus and Trichoderma viride were isolated exclusively from the amended soils. Aqueous extract of A. mexicana when applied in soil greatly suppressed all three of the above root‐infecting fungi, and at lower concentration actually enhanced plant growth. The influence of different levels of N‐fertilization with NH4NO3 on the modification of the effect of decaying A. mexicana on root‐infecting fungi was also investigated. N‐fertilization to some extent alleviated the phytotoxicity to tomato plants while suppressing the root‐infecting fungi. A. mexicana in conjunction with Pseudomonas aeruginosa, a plant growth‐promoting rhizobacterium, significantly suppressed root‐infecting fungi with concomitant increase in plant growth. Whereas P. aeruginosa was reisolated from the rhizosphere and inner root tissues of tomato, its population slightly declined in the amended soil but not to an extent that could reduce the biocontrol and growth promoting potential of the bacterium.
Although the total phenol content in the berry of grape (Vitis vinifera L. cv. `Muscat of Alexandria') was kept constant during period II and III , the qualitative changes of the phenols could be found before and after veraison. Three of 7 fractions, which were separated from the berry by several organic solvents, exhibited growth inhibitory activity in the avena coleoptile straight growth test. By the 1-demensional paper chromatogram, the activity was found at the Rf differing from that of ABA in period II, while it was found at the Rf corresponding that of ABA late in period III. Nineteen spots were detected on the 2-dimensional paper chromatogram and 13 of them showed phenolic reactions to UV light and some reagents. Among the 13 phenolic spots, 5 were large in area on the paper chromatogram in period II, but they were small or none in period III. The reverse was true for other 3, excepted the 5, among the phenolic spots. Among the phenolic spots, 4 showed no change in area on the paper chromatogram during period II and III. The phenolic spot, which remained at the original point on 2-dimension paper chromatogram, exhibited the growth inhibitory activity and it showed large in area in period II but small after veraison. Four spots did not show phenolic reactions with all reagents, and 2 of them were large in area during period II including veraison, and none in period III. One or 2 of them may have the growth inhibitory activity. From this experiment, it may assumed that the berry growth is retarded during period II by phenols as immovably associated tannin and nonphenolic compounds, and late in period III by ABA like substance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.