The efficient detection of lead ions (Pb2⁺) is significant for environmental protection and public health. Electrochemical detection has emerged as one of the most promising technologies due to its low detection limits, high sensitivity, and cost-effectiveness. However, significant challenges remain, including issues related to sensitivity, selectivity, interference, and the stability of electrode materials. This review explores recent advancements in the field, focusing on integrating novel catalytic materials and innovative sensor construction methods. Particular emphasis is placed on enhancing the electrocatalytic redox processes on sensor surfaces using advanced nanomaterials such as MXenes, ferrite-based nanomaterials, carbon nanomaterials, and metal–organic frameworks (MOFs). Additionally, the role of biomaterials and enzymes in improving electrochemical sensors’ selectivity and anti-interference capabilities is discussed. Despite the impressive low detection limits achieved, real-world applications present additional challenges due to the complex composition of environmental samples. The review concludes with future perspectives on overcoming these challenges by leveraging the unique properties of catalytic materials to develop more effective and reliable electrochemical sensors for trace Pb2⁺ detection.