Small nucleolar RNAs (snoRNAs) guiding modifications of ribosomal RNAs and other RNAs display diverse modes of gene organization and expression depending on the eukaryotic system: in animals most are intron encoded, in yeast many are monocistronic genes and in plants most are polycistronic (independent or intronic) genes. Here we report an unprecedented organization: plant dicistronic tRNA–snoRNA genes. In Arabidopsis thaliana we identified a gene family encoding 12 novel box C/D snoRNAs (snoR43) located just downstream from tRNAGly genes. We confirmed that they are transcribed, probably from the tRNA gene promoter, producing dicistronic tRNAGly–snoR43 precursors. Using transgenic lines expressing a tagged tRNA–snoR43.1 gene we show that the dicistronic precursor is accurately processed to both snoR43.1 and tRNAGly. In addition, we show that a recombinant RNase Z, the plant tRNA 3′ processing enzyme, efficiently cleaves the dicistronic precursor in vitro releasing the snoR43.1 from the tRNAGly. Finally, we describe a similar case in rice implicating a tRNAMet‐e expressed in fusion with a novel C/D snoRNA, showing that this mode of snoRNA expression is found in distant plant species.