Fibroblast growth factor (FGF) 23 inhibits calcitriol production, which could exacerbate calcium deficiency or hypocalcemia unless calcium itself modulates FGF23 in this setting. In Wistar rats with normal renal function fed a diet low in both calcium and vitamin D, the resulting hypocalcemia was associated with low FGF23 despite high parathyroid hormone (PTH) and high calcitriol levels. FGF23 correlated positively with calcium and negatively with PTH. Addition of high dietary phosphorus to this diet increased FGF23 except in rats with hypocalcemia despite high PTH levels. In parathyroidectomized rats, an increase in dietary calcium for 10 days increased serum calcium, with an associated increase in FGF23, decrease in calcitriol, and no change in phosphorus. Also in parathyroidectomized rats, FGF23 increased significantly 6 hours after administration of calcium gluconate. Taken together, these results suggest that hypocalcemia reduces the circulating concentrations of FGF23. This decrease in FGF23 could be a response to avoid a subsequent reduction in calcitriol, which could exacerbate hypocalcemia. 23: 119023: -119723: , 201223: . doi: 10.1681 Fibroblast growth factor (FGF) 23 production is stimulated by both calcitriol and phosphorus intake. FGF23 acts through FGFR-klotho receptors in the kidney to induce phosphaturia, a decrease in 1-a-hydroxylase activity, and an increase in 24-hydroxylase activity. The latter two effects decrease the synthesis and increase the degradation of calcitriol, respectively. 1-4 Parathyroid cells also possess FGFR-klotho receptors, and experimental studies have shown that FGF23 inhibits parathyroid hormone (PTH) production and secretion. [5][6][7] However, in uremic animals, hyperplastic parathyroid glands fail to respond to FGF23 because the expression of FGFR-klotho is downregulated. [7][8][9][10][11] FGF23 effectively increases the output and decreases the input of phosphorus because it directly increases phosphaturia and indirectly decreases intestinal phosphorus absorption by decreasing calcitriol values. However, a conflict will arise if high FGF23 inhibits calcitriol production in a setting of calcium deficiency/hypocalcemia, where high calcitriol is needed to increase intestinal calcium absorption. We have previously observed in parathyroidectomized (PTX) rats with decreased serum
J Am Soc Nephrol