Ascidians have powerful capacities for regeneration but the underlying mechanisms are poorly understood. Here we examine oral siphon regeneration in the solitary ascidian Ciona intestinalis. Following amputation, the oral siphon rapidly reforms oral pigment organs (OPO) at its distal margin prior to slower regeneration of proximal siphon parts. The early stages of oral siphon reformation include cell proliferation and re-growth of the siphon nerves, although the neural complex (adult brain and associated organs) is not required for regeneration. Young animals reform OPO more rapidly after amputation than old animals indicating that regeneration is age dependent. UV irradiation, microcautery, and cultured siphon explant experiments indicate that OPOs are replaced as independent units based on local differentiation of progenitor cells within the siphon, rather than by cell migration from a distant source in the body. The typical pattern of eight OPOs and siphon lobes is restored with fidelity after distal amputation of the oral siphon, but as many as 16 OPOs and lobes can be reformed following proximal amputation near the siphon base. Thus, the pattern of OPO regeneration is determined by cues positioned along the proximal distal axis of the oral siphon. A model is presented in which columns of siphon tissue along the proximal–distal axis below pre-existing OPO are responsible for reproducing the normal OPO pattern during regeneration. This study reveals previously unknown principles of oral siphon and OPO regeneration that will be important for developing Ciona as a regeneration model in urochordates, which may be the closest living relatives of vertebrates.