The persistence under controlled chemical and physical conditions and the ability to respond t o defined environmental changes was follow d in extremely simple (homogenous or 2-phase) ecosystems with continuous or semicontinuous flow. In the honiogenous case the Aufwuchs was removed. Primary productivity and community respiration were computed by means of continuous recording of dissolved oxygen. Under constant environmental conditions the systems usually exhibited slow oscillations of the ecosystem parameters around an equilibrium state. The temporal variations of functional criteria such as elimination rate of easily degradable organic substances or daily oxygen amplitude were slight in comparison to the significant random oscillations in individual numbers of the predominating species of phytoplankton and zooplankton. One of the mechanisms responsible for this functional stability may be the inverse relationship bet.ween biomaea and activity per unit biomass as observed also in the laboratory models. If the sewage pond microecosystems after a shut down in the inflow were, operated without any exchange of nutrients and gases they nevertheless maintained a very high level both of autotrophic and heterotrophio metabolism.Step forcing of nutrient (sewage) concentration, dilution rate or day length produced a new equilibrium state within 1 or 2 days, if the functional criteria mentioned above were taken as output signals. Also in the case of pulse forcing such a rapid adaptation was t o be observed. This may contribute to the fact, that the turnover rate of the population was in the same range as the renen-a1 rate of the water. The results are discussed with respect to short and long term effects of abatement of pollution from flowing and standing waters.