Fluorinated imines (Schiff bases) and fluorinated hydrazones are of particular interest in medicinal chemistry due to their potential usefulness in treating opportunistic strains of bacteria that are resistant to commonly used antibacterial agents. The present review paper is focused on these fluorinated molecules revealing strong, moderate or weak in vitro antibacterial activities, which have been reported in the scientific papers during the last fifteen years. Fluorinated building blocks and reaction conditions used for the synthesis of imines and hydrazones are mentioned. The structural modifications, which have an influence on the antibacterial activity in all the reported classes of fluorinated small molecules, are highlighted, focusing mainly on the importance of specific substitutions. Advanced research techniques and innovations for the synthesis, design and development of fluorinated imines and hydrazones are also summarized.