In this work, four triazole-based poly(ether-pyridine)s polymers were synthesized and used as an adsorbent for the removal of phenolic compounds from aqueous solutions. For this purpose, new fluoromonomers containing 1,2,3-triazole units were prepared by the Cu(I)-catalyzed 1,3-dipolar cycloaddition reaction and then used for the elaboration of novel poly(ether-pyridine-triazole)s (PEPTs) by direct polycondensation with isosorbide and bisphenol A. Chemical structure of fluorinated pyridinic monomers as well as resulting polymers was confirmed by 1 H and 19 F NMR spectroscopic methods. The thermal behavior of the obtained PEPTs was characterized using differential scanning calorimetry and thermogravimetric analysis. Results of sorption showed that polymers can be effectively used as a sorbent for the removal of polar organic pollutants. The isosorbide-based poly(ether-pyridine-triazole) which contains hydrophilic hydroxyl groups as pendants chains (P4) exhibited the highest sorption efficiencies (78%-100% after 1 h). In order to explain the results an adsorption mechanism mainly based on π-π interactions and hydrogen bonding with the pendent groups is proposed.