Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
We present the methodology and results of parametric aerodynamic studies of vehicles descending into the planet’s atmosphere. The proposed computational approach might serve as the basis for solving a number of problems such as predicting and optimizing the descent trajectory of the vehicle, the search for a rational aerodynamic layout of the vehicle, i.e., tasks requiring massive parametric calculations. The systematization of such calculations is the first step towards the creation of a specialized database that includes sets of input and output data (flight speed, angles of attack, drag and lift coefficients, aerodynamic pitching moment, etc.) and the corresponding three-dimensional fields of gas-dynamic quantities together with computational meshes of various granularity and parameters of the computational model. Additional information to each element of the database might be a set of variables, parameterizing the geometry of the vehicle, experimental data, etc. The probability of forming the information content of such a data-base using modern supercomputer systems is shown. The capabilities of the domestic supercomputer aerodynamic code NOISEtte are demonstrated in the field of multiparametric three-dimensional calculations of descent vehicles based on the numerical solution of the Navier --- Stokes equations on three-dimensional unstructured meshes
We present the methodology and results of parametric aerodynamic studies of vehicles descending into the planet’s atmosphere. The proposed computational approach might serve as the basis for solving a number of problems such as predicting and optimizing the descent trajectory of the vehicle, the search for a rational aerodynamic layout of the vehicle, i.e., tasks requiring massive parametric calculations. The systematization of such calculations is the first step towards the creation of a specialized database that includes sets of input and output data (flight speed, angles of attack, drag and lift coefficients, aerodynamic pitching moment, etc.) and the corresponding three-dimensional fields of gas-dynamic quantities together with computational meshes of various granularity and parameters of the computational model. Additional information to each element of the database might be a set of variables, parameterizing the geometry of the vehicle, experimental data, etc. The probability of forming the information content of such a data-base using modern supercomputer systems is shown. The capabilities of the domestic supercomputer aerodynamic code NOISEtte are demonstrated in the field of multiparametric three-dimensional calculations of descent vehicles based on the numerical solution of the Navier --- Stokes equations on three-dimensional unstructured meshes
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.