A particle-based C 3 S hydration model, which mathematically connects a nucleation and growth controlled mechanism with a diffusion controlled mechanism, is developed in this study. The model is first formulated and fitted with C 3 S hydration in stirred dilute suspensions in Part I where interactions between different particles can be ignored, and further developed and fitted with Portland cement paste hydration in Part II to account for inter-particle interactions. Excellent agreement was observed between experimental and modeled results. Three critical rate-controlling parameters, including a parallel growth rate constant, a perpendicular growth rate constant and a diffusion constant, were identified from the proposed model. The dependencies of these parameters on particle size and initial quantity of nuclei are investigated in Part I while their dependencies on cement composition, water-cement ratio, and curing condition are studied in Part II.