Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
To study the influence of cyclic disturbance stress on the mechanical behavior of coal during mining, a gas containing coal fluid-solid coupling servo seepage experimental system was used to conduct experimental research on the acoustic emission (AE) characteristics of gas containing coal under two stress paths of graded cyclic loading and unloading. The AE characteristics of coal damage and failure processes under different cyclic stress paths were analyzed. The research results indicate that: (1) The overall characteristics of AE signals for both graded cyclic loading and unloading paths are basically the same. With increasing of the amount of graded cyclic loading or unloading, the AE count reaches its maximum value when reaching failure, and the cumulative ringing calculation of AE increases exponentially. (2) The AE signals under the graded cyclic loading or unloading path exhibit obvious zoning characteristics. In the low and medium stress regions, the AE signal basically satisfies the Kaiser effect, while reaching the high stress region before failure, the AE signal exhibits a significant Felicity effect. (3) The concentration coefficient of AE and the intensity coefficient of the Kaiser effect have been newly defined. They are used to quantitatively characterize the extent of the Kaiser effect of AEs under graded cyclic stress. It was found that as the variation of graded cyclic stress increases, the concentration coefficient and Kaiser effect intensity coefficient both show a decreasing trend. (4) Combining the AF and RA values of AE, it was found that the coal failure signals of the two stress paths were basically similar, that is, the overall failure was mainly tensile failure, and the signals of cyclic unloading tensile failure were significantly more than those of cyclic loading. The AE signal characteristics studied in this article are of great significance for predicting coal power disasters.
To study the influence of cyclic disturbance stress on the mechanical behavior of coal during mining, a gas containing coal fluid-solid coupling servo seepage experimental system was used to conduct experimental research on the acoustic emission (AE) characteristics of gas containing coal under two stress paths of graded cyclic loading and unloading. The AE characteristics of coal damage and failure processes under different cyclic stress paths were analyzed. The research results indicate that: (1) The overall characteristics of AE signals for both graded cyclic loading and unloading paths are basically the same. With increasing of the amount of graded cyclic loading or unloading, the AE count reaches its maximum value when reaching failure, and the cumulative ringing calculation of AE increases exponentially. (2) The AE signals under the graded cyclic loading or unloading path exhibit obvious zoning characteristics. In the low and medium stress regions, the AE signal basically satisfies the Kaiser effect, while reaching the high stress region before failure, the AE signal exhibits a significant Felicity effect. (3) The concentration coefficient of AE and the intensity coefficient of the Kaiser effect have been newly defined. They are used to quantitatively characterize the extent of the Kaiser effect of AEs under graded cyclic stress. It was found that as the variation of graded cyclic stress increases, the concentration coefficient and Kaiser effect intensity coefficient both show a decreasing trend. (4) Combining the AF and RA values of AE, it was found that the coal failure signals of the two stress paths were basically similar, that is, the overall failure was mainly tensile failure, and the signals of cyclic unloading tensile failure were significantly more than those of cyclic loading. The AE signal characteristics studied in this article are of great significance for predicting coal power disasters.
Acoustic emission information can describe the damage degree of rock samples in the process of failure. However, as a discrete non-stationary signal, acoustic emission information is difficult to be effectively processed by conventional methods, while wavelet analysis is an effective method for non-stationary signal processing. Therefore, acoustic emission signal is deeply studied by using wavelet analysis method. In this paper, on the basis of noise reduction of acoustic emission signal, Matlab calculation program is used to decompose the acoustic emission signal of coal sample under the confining pressure test of triaxial unloading, and the singularity detection is carried out. The results show that the time when the Lipschitz index value first appears α negative can be used as the prediction time. However, the corresponding time when the Lipschitz index value is -0.15~-0.31 should be excluded; The absolute range of the difference between the final forecast time and the actual rupture time of coal samples is [5.2s, 17.1s], and the coal samples with the absolute value of time difference within [5.2s, 10.0s] account for 63.6% of the total.
The impact of karst collapses on railway engineering spans the entire lifecycle of railway construction and operation, with train loads being a significant factor in inducing such collapses. To study the dynamic response characteristics of subgrades in karst areas and to select appropriate monitoring points and indicators for long-term effective monitoring, a numerical simulation method was employed to analyze the vibration response characteristics of the subgrade. A three-dimensional finite element model coupling the high-speed train, ballastless track, and subgrade foundation was established to study the vibration responses of subgrades when the train passes over a subgrade with an underlying soil hole and one without a soil hole. The results indicate that when there was a soil hole, both the dynamic displacement amplitude and vibration acceleration amplitude decreased, while the dominant frequency slightly increased, with the dominant frequency being higher at locations closer to the soil hole. The vibration response at the soil hole location showed significant attenuation, with the attenuation coefficient of dynamic displacement amplitude being higher than that of the vibration acceleration amplitude. Monitoring points were arranged at positions 0 m to 10 m from the toe of the slope, with vertical dynamic displacement, vertical vibration acceleration, the dominant frequency of vertical vibration acceleration, and corresponding amplitude selected as monitoring indicators. These indicators effectively reflect whether soil holes exist within the subgrade and help identify the locations of defects. This study summarizes the dynamic response characteristics of subgrades in karst areas under different conditions, providing a basis for the design and monitoring of railway subgrades in regions prone to karst collapse.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.