The goal of this paper is to study the dielectric behavior, in the ternary composites microwave domain, and simplifying ternaries models into binaries ones using time domain spectroscopy. We worked on three ternary composites made of epoxy resin (Re), manganese dioxide (MnO2) and one of three different titanates (XT): barium titanate (BT), calcium titanate (CT) or magnesium titanate (MT). These composites samples dielectric behavior is inspected over a frequency range from DC to 5 GHz. This aims to optimize the predictive modified Lichtenecker's law model (MLL) through a better smoothing shape factor making theoretical and experimental results very close to each other. The comparison between these results shows that the MLL model is pertinent for ternary mixtures (Re-XT-MnO2) with an appreciable accuracy degree. Another numerical approach applied to the Re-[Re-XT-MnO2] mixtures using a binary mixture model equivalent to the previous ternary one based on a simplified MLL expression and preserving the same mixture constituents. This model results are in good agreement not only with ternaries ones being modeled with this law but also with other modeling laws appreciated with binary composites. This study interest lies on these materials application in the telecommunications components miniaturization and in microwave electronic applications.