To further improve the mechanical properties and corrosion resistance of the biodegradable magnesium (Mg) alloy, the Mg-4Zn-0.5Sr-xAg alloy (x = 0.2 wt.%, 0.5 wt.%, 1.0 wt.%, and 2.0 wt.%) was smelted in vacuum under the protection of inert gas. The effect of the Ag content on the microstructure and mechanical properties of Mg-4Zn-0.5Sr was tested. The results show that the comprehensive properties of Mg-4Zn-0.5Sr-0.5Ag are best. The grain size of the Mg-4Zn-0.5Sr-0.5Ag alloy is minimal, that is, 83.28 μm. The average tensile strength (σb), yield strength (σs), elongation (ε), and hardness for the Mg-4Zn-0.5Sr-0.5Ag alloy is 168.00 MPa, 88.00 MPa, 12.20%, and 59.90 HV, respectively. To further improve the properties of cast Mg-4Zn-0.5Sr-0.5Ag alloy, extruding treatment was conducted. After extrusion deformation, the grain size of the alloy was significantly refined to 9 μm; at the same time, fine second phases were formed and evenly distributed in the matrix. And then, the mechanical properties of the alloy are significantly enhanced due to the effect of fine crystal strengthening and dispersion strengthening. The σb, σs, ε, and hardness value for the extruded Mg-4Zn-0.5Sr-0.5Ag alloy are 236.00 MPa, 212.00 MPa, 18.97%, and 65.42 HV, respectively. Under the synergistic action of adding the Ag element and extrusion treatment, the grain size of the alloy was significantly refined and the coarse second phase in the alloy became refined to disperse in the matrix, which benefits the formation of electric couples characterized as small cathode–large anode between the second phase and Mg matrix. During full immersion, corrosion products covered on the large anode surface could reduce the galvanic corrosion tendency.