This paper presents a comparison of the acoustic emission (AE) energy and the plastic strain energy released by some reinforced concrete (RC) specimens subjected to cyclic or seismic loadings. AE energy is calculated, after proper filtering procedures, using the signals recorded by several AE low frequency sensors (25-100 kHz) attached on the specimens. Plastic strain energy is obtained by integrating the load displacement curves drawn from the measurements recorded during the test. Presented are the results obtained for: (i) two beams (with and without an artificial notch) and a beam-column connection subjected to several cycles of imposed flexural deformations; (ii) a reinforced concrete slab supported by four steel columns, and a reinforced concrete frame structure, both of the latter are subjected to seismic simulations with a uniaxial shaking table. The main contribution of this paper, which is a review of some papers previously published by the authors, is to highlight that, in all cases, a very good correlation is found between AE energy and plastic strain energy, until the onset of yielding in the reinforcing steel. After yielding, the AE energy is consistently lower than the plastic strain energy. The reason is that the plastic strain energy is the sum of the contribution of concrete and steel, while the AE energy acquired with thresholds higher than 35 dB AE captures only the contribution of the concrete cracking, not the steel plastic deformation. This good correlation between the two energies before the yielding point also lends credibility to the use of AE energy as a parameter for concrete damage evaluation in the context of structural health monitoring.