The generation of energetic ions and DD neutrons from microfusion at the interelectrode space of a low-energy nanosecond vacuum discharge has been demonstrated recently [1, 2]. However, the physics of fusion processes and some results regarding the neutron yield from the database accumulated were poorly understood. The present work presents a detailed particle-in-cell (PIC) simulation of the discharge experimental conditions using a fully electrodynamic code. The dynamics of all charge particles was reconstructed in time and anode–cathode (AC) space. The principal role of a virtual cathode (VC) and the corresponding single and double potential wells formed in the interelectrode space are recognized. The calculated depth of the quasistationary potential well (PW) of the VC is about 50–60 keV, and the D+ ions being trapped by this well accelerate up to energy values needed to provide collisional DD nuclear synthesis. The correlation between the calculated potential well structures (and dynamics) and the neutron yield observed is discussed. In particular, ions in the potential well undergo high-frequency (∼80 MHz) harmonic oscillations accompanied by a corresponding regime of oscillatory neutron yield. Both experiment and PIC simulations illustrate favorable scaling of the fusion power density for the chosen IECF scheme based on nanosecond vacuum discharge.