Seeking to support the massive deployment of information and communication technologies (ICTs) by means of a more efficient usage of the optical fiber infrastructure, DWDM optical networks have been undergoing a significant capacity evolution, by using advanced modulation formats for optical channels operating at data rates of 100 Gb/s and beyond, as well as by employing dynamic and reconfigurable network topologies. These new generation optical networks impose new performance benchmarks on the optical amplifiers. Specifically, the dynamic characteristics of the network make mandatory the deployment of control schemes which assure stringent optical gain spectral flatness while the usage of high-order advanced modulation formats translate into more strict margins of signal-to-noise ratios for the detected signals. In this context, this thesis proposes and experimentally evaluates an hybrid Raman/EDFA optical amplifier topology, introducing a novel automatic gain control scheme and demonstrating improved performance over the optical amplifiers already in use in DWDM reconfigurable networks. The developed hybrid optical amplifier is based on a distributed counter-propagating Raman stage, displaying excellent noise figure performance (albeit presenting low conversion efficiency-PCE) followed by an EDFA stage, which assures high output power, due to its high PCE. Flat spectral gain was achieved by means of a novel gain control technique, based on the parallel and independently acting of two control schemes, the first applied over the Raman amplifying stage, aiming at a variable target gain and low spectral gain ripple, while the other seeks to attain a fixed target gain at the EDFA, assuring a high output power.