We report the formation of a tetranuclear lanthanide cluster, [Yb4(bpzch)2(fod)10] (1), which occurs from a serendipitous ring opening of the functionalised tetrazine bridging ligand, bpztz (3,6‐dipyrazin‐2‐yl‐1,2,4,5‐tetrazine) upon reacting with Yb(fod)3 (fod−=6,6,7,7,8,8,8‐heptafluoro‐2,2‐dimethyl‐3,5‐octandionate). Compound 1 was structurally elucidated via single‐crystal X‐ray crystallography and subsequently magnetically and spectroscopically characterised to analyse its magnetisation dynamics and its luminescence behaviour. Computational studies validate the observed MJ energy levels attained by spectroscopy and provides a clearer picture of the slow relaxation of the magnetisation dynamics and relaxation pathways. These studies demonstrate that 1 acts as a single‐molecule magnet (SMM) under an applied magnetic field in which the relaxation occurs via a combination of Raman, direct, and quantum tunnelling processes, a behaviour further rationalised analysing the luminescent properties. This marks the first lanthanide‐containing molecule that forms by means of an asymmetric tetrazine decomposition.