The paper presents a detailed analysis of split end and cracking problems that occurred during hot rolling of thermomechanically treated (TMT) grade steel bars. The major analytical tool was a multiscan computer-controlled ultrasonic image analysis system for analysis of the defects observed on transverse cut slices of the billets under investigation. The possible reasons for billet cracking during hot rolling such as a low Mn/S ratio, high casting speed, high degree of superheat, and high inclusion content in steel were analyzed. Additionally in the process parameters such as low roll diameter, high friction, and low reduction ratio were also analyzed. The cracking appeared to be associated with large surface/internal defects, axial porosity, off-centered cavities/porosities, off-centered cracks, and inclusion bands. The analysis results suggested methods to prevent such defects in continuously cast steel billets and to reduce/eliminate split end problems. The casting parameters should include: (a) Mn/S ratio [35, (b) degree of superheat \60°C, and (c) casting speed: \3.0 m/min, where roll radius and initial thickness of the workpiece should be optimized.