This paper presents the results of a study of the internal wave isolation of the Northern coast of Morocco using synthetic aperture radar (SAR) images. A filter is applied to the remote sensing data to reduce the image grain, after which the direction of propagation of the wave is determined and its length is calculated. In most cases, internal waves appear on satellite images as quasi-periodic linear structures whose brightness is lower or higher than the background, which is well registered in the visible range and by synthetic aperture radar. When analyzing images off the coast of Morocco, internal waves were detected, the wave packet propagates in the direction from West to East. When comparing the obtained images with the bottom relief map, it can be assumed that the generation of internal waves is caused by the roughness of the bottom near the Northern coast of Morocco. The maximum wave length in the wave packet is almost 0.7 km, consists of at least 5 solitons, the prints of these solitons in the sea roughness area are visible in the images mainly in the Central part of a wave packet, the distance between a wave packet solitons is different. The wavelength decreases when moving to the back of a wave packet, which can be traced by changing the contrast on the site. As a result, internal waves were detected off the Northern coast of Morocco in rads images with a synthesized aperture, and the main characteristics of these waves were determined.