SAE Technical Paper Series 2018
DOI: 10.4271/2018-36-0178
|View full text |Cite
|
Sign up to set email alerts
|

Study of machine learning algorithms to state of health estimation of iron phosphate lithium-ion battery used in fully electric vehicles

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1

Citation Types

0
3
0

Year Published

2020
2020
2022
2022

Publication Types

Select...
3

Relationship

0
3

Authors

Journals

citations
Cited by 3 publications
(3 citation statements)
references
References 7 publications
0
3
0
Order By: Relevance
“…Degradation of single cells is usually invisible in conventional battery systems. [226] x x x Haifeng et al [217] x x DKF Chiang et al [235] x x Adaptive O. Kim et al [19] x x x SMO Plett et al [236] x x WTLS Remmlinger et al [237] x x RLS Hu et al [174] x x DKF Rahimian et al [238] x LAM EKF/UKF Andre et al [192] x x x Feng et al [227] x x x Point Counting Kim et al [189] x x x Nuhic et al [239] x x x Prasad et al [222] x x Diffusion Time LS Remmlinger et al [240] x x KF Schwunk et al [241] x x PF Weng et al [242] x x x x Zheng et al [243] x x GA Eddahech et al [225] x CVCT Empirical Guo et al [223] x CCCT NLS Han et al [244] x x Calibrated O. Hu et al [245] x Sample Entropy Empirical Kim et al [80] x DWT Empirical Zou et al [185] x x DKF Berecibar et al [246] x x x Wu et al [247] x x x Zou et al [186] x x EKF Dubarry et al [248] x LAM, LLI Empirical Gong et al [233] x Gas Production Empirical Huhman et al [231] x x x Sanchez et al [249] Vessel Model x Fuzzy Cai et al [250] x DWT Empirical Chen et al [251] x x RF Lajara et al [232] x x x LS Li et al [228] x x x Li et al [252] x x EKF, PF Santos et al [253] x x x Shen et al [198] x x RLS Smiley et al [254] x x IMM KF Tang et al [255] x x...…”
Section: Online Identification Of State Of Healthmentioning
confidence: 99%
“…Degradation of single cells is usually invisible in conventional battery systems. [226] x x x Haifeng et al [217] x x DKF Chiang et al [235] x x Adaptive O. Kim et al [19] x x x SMO Plett et al [236] x x WTLS Remmlinger et al [237] x x RLS Hu et al [174] x x DKF Rahimian et al [238] x LAM EKF/UKF Andre et al [192] x x x Feng et al [227] x x x Point Counting Kim et al [189] x x x Nuhic et al [239] x x x Prasad et al [222] x x Diffusion Time LS Remmlinger et al [240] x x KF Schwunk et al [241] x x PF Weng et al [242] x x x x Zheng et al [243] x x GA Eddahech et al [225] x CVCT Empirical Guo et al [223] x CCCT NLS Han et al [244] x x Calibrated O. Hu et al [245] x Sample Entropy Empirical Kim et al [80] x DWT Empirical Zou et al [185] x x DKF Berecibar et al [246] x x x Wu et al [247] x x x Zou et al [186] x x EKF Dubarry et al [248] x LAM, LLI Empirical Gong et al [233] x Gas Production Empirical Huhman et al [231] x x x Sanchez et al [249] Vessel Model x Fuzzy Cai et al [250] x DWT Empirical Chen et al [251] x x RF Lajara et al [232] x x x LS Li et al [228] x x x Li et al [252] x x EKF, PF Santos et al [253] x x x Shen et al [198] x x RLS Smiley et al [254] x x IMM KF Tang et al [255] x x...…”
Section: Online Identification Of State Of Healthmentioning
confidence: 99%
“…The BMS is the device in charge of controlling different battery parameters: (i) current, (ii) voltage, (iii) SOC, (iv) SOH, and (v) temperature. CPqD research even includes algorithms for the assessment of SoC [129] and SoH [130].…”
Section: Electromobility Market and Charging Infrastructure Developmentmentioning
confidence: 99%
“…Phattara Khumprom et al [ 16 ] presented the preliminary development of data-driven prognostics and used deep neural networks (DNNs) and the NASA (PCoE) battery dataset to predict the SoH and the RUL of a lithium-ion battery. Daniel Vieira et al [ 17 ] proposed a general data-driven method for estimating battery SOH. Through continuous experiments on lithium-iron phosphate batteries in the laboratory, the original dataset was obtained, and then a NARX (nonlinear auto-regressive network with exogenous inputs) neural network was explored.…”
Section: Introductionmentioning
confidence: 99%