Keywords: Polyethylene; Biodegradation; Microalgae; SEM
IntroductionPlastics (Polyethylene) are the synthetic organic polymers which are commonly produced from high density polyethylene, one of the petroleum derived product. The plastic carrier bags are routinely used for carrying groceries, clothing and other merchandises [1]. It was from late 1970s that the plastic carrier bags have become a common element in our day to day life in this globalized world. The increasing use of plastics, particularly packaging has become a significant source for environmental pollution and creating problems in solid waste management as well as lethal to wild life and human being due to its non-degradability in nature.It is estimated that around 500 billion plastic bags are being used every year worldwide. This widespread utilization is attributed to their cheapness and convenience to use. The vast majority of these bags are discarded as wastes usually after a single use. It has been revealed that after their entry into environment, plastic bags can persist up to 1000 years without being decomposed. Accumulation of plastic bag wastes causes environmental pollution that can be manifested in number of ways. Biological degradation is an attractive, recent and alternative approach to plastic waste management, which is generally a cheaper process, potentially much more efficient and does not produce any hazardous compounds, as in the case of conventional degradation [2]. Additionally, the microbial degradation of polyethylene sheets may yield commercial end products from their biomass [3].There are only three degradative methods including landfill, incineration and recycling are being followed on large scale basis. In the case of direct incineration, the plastics emit poisonous gases such as dioxins, carbon mono-oxide, NO x , SO x and heavy metals [4] in to the atmospheric air. However, as a result the remnants after these treatments causing severe damages to the environment. Landfill
AbstractConventional methods of polyethylene degradation including incineration, landfill and chemical treatment are lethal to the neighboring environment by causing hazardous effects on living organisms. A better solution for the complete degradation of polyethylene has not yet been formulated. However, to solve this global issue biological mode of polyethylene degradation may be evaluated and developed in the upcoming future. In this research investigation, microalgae like green algae, blue-green algae and diatoms were isolated from the domestic polyethylene bags dumped in the suburban water bodies and studied for its potency on deterioration of polyethylene. The dumped waste polyethylene bags were collected from three different sites of (Maduravoyal, Vanagaram and Poonamallee) Chennai, Tamil Nadu, India. Colonized mat of microalgae were isolated from the polyethylene sheets and the most dominant three different groups of microalgae were selected for the biological treatment of LD (low density) and HD (high density) polyethylene sheets. The most dom...