To solve the problem of asynchronous speed between the coaxial in-wheel motors of distributed drive electric vehicle caused by changes in the road surface, load, and other factors during the regenerative braking of the vehicle, which may result in a yaw motion of the vehicle and a reduction in vehicle stability, a synchronization control strategy of regenerative braking for distributed drive electric vehicles is proposed. Firstly, a ring-coupled synchronous control strategy with the current compensation module is designed. Then, the speed controller of a permanent magnet synchronous in-wheel motor and a compensation controller of synchronous control are designed based on the non-singular fast terminal sliding mode control. Combining this with the regenerative braking control strategy, a regenerative braking synchronization control strategy is designed. The simulation results show that compared with the existing synchronization control strategy, the designed new ring-coupled synchronization control strategy can improve the speed synchronization performance between the motors after the disturbance. Moreover, compared with the conventional regenerative braking control strategy, the regenerative braking synchronization control strategy can reduce the speed synchronization error between the motors during the regenerative braking process, so as to improve the synchronization and output stability of the motors during the braking process.