In this review paper, a critical assessment of the main degradation processes in three key components of solid oxide fuel cells and electrolysers (negative and positive electrodes and the interconnect) is undertaken, attempting prioritization of respective degradation effects and recommendation of the best approaches in their experimental ascertainment and numerical modeling.Besides different approaches to quantifying the degradation rate of an operating solid oxide cell (SOC), the latest advancements in microstructural representation (3D imaging and reconstruction) of SOC electrodes are reviewed, applied to the quantification of triple-phase boundary (TPB) lengths and morphology evolution over time. The intrinsic degradation processes in the negative (fuel)This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.