The interaction of fullerenes and their derivatives with environmental molecules such as oxygen or water was crucial for the rational design of low-dimensional materials and devices. In this paper, the near-edge X-ray absorption fine structure (NEXAFS), X-ray emission spectroscopy (XES) and X-ray photoelectron spectroscopy (XPS) shake-up satellites were employed to distinguish the oxides and hydrates of the fullerene C60 and azafullerene C59N families. The study includes various isomers, such as the open [5,6] and closed [6,6] isomers of C60O, C60H(OH), C60-O-C60, C60H-O-C60H, C59N(OH) and C59N-O-C59N, based on density functional theory. These soft X-ray spectra offered comprehensive insights into the molecular orbitals of these azafullerene molecular groups. The oxygen K-edge NEXAFS, carbon and oxygen K-edge XPS shake-up satellite spectra provided valuable tools for distinguishing oxides or hydrates of fullerene C60 and azafullerene C59N. Our findings could significantly benefit the development of fullerene functional molecular materials and expand the application scope of soft X-ray spectroscopy as a molecular fingerprinting tool for the fullerene family.