In order to investigate the explosion mechanism of sucrose in the air atmosphere, the explosion intensity under different ignition delay times (IDT), powder input pressures (PIP), and concentrations were studied using a 20L-sphere. The sucrose particles were analyzed in a synchronized thermal analyzer (STA) and scanning electron microscope (SEM). The results are as follows: 1. The DSC curve has two endothermic peaks and one exothermic peak, respectively at T = 180.5 ℃, 510.2 ℃ and 582.6 ℃. 2. The explosion intensity varies with the experiment conditions. The maximum explosion pressure (Pmax) appears when IDT = 90 ms, PIP = 1.5 MPa and concentration = 625 g/m3. 3. The explosive mechanism is a homogeneous combustion mechanism based on particle surface pyrolysis and volatilization. Because of the decomposition, H2, CO, furfural, and other flammable gas-phase products are released, then surface burn appears, which leads to the crystal rupture on account of thermal imbalance, resulting in multiple flame points and a chain explosion. As the temperature of the 20L-sphere rises, more explosive products are released, which causes a rapidly expanding explosion and eventually forms the explosion. This paper can be used as a reference for the prevention of explosion accidents in sucrose production processing.