To make steel slag being reasonably used in geotechnical backfilling projects or soft foundation treatment projects, three kinds of steel slag such as fine, coarse, and gravel steel slag were studied through particle analysis tests, relative density tests, and specific gravity tests to obtain basic physical parameters. Considering the influence of relative density, gradation, and other factors, constant head permeability tests of pure steel slag and variable head permeability tests of modified silt soil with different mixing contents of steel slag were carried out to test permeability coefficients under various working conditions. Prediction formulas on the permeability coefficients of the three kinds of pure steel slag and steel slag-treated silt soil were, respectively, deduced. It was concluded that the permeability coefficient of pure steel slag was greatly influenced by particle size and relative density, similar to the case of permeability coefficients of fly ash and fine sand in their dense states, and the larger the relative density was, the smaller the permeability coefficient was. The permeability coefficient of steel slag-treated silt soil increased with increasing of mixing content of steel slag, showing that steel slag can obviously improve the permeability performance of silt soil. Research results provide reference for design and construction on the application of steel slag in roadbed backfill, steel slag modifying silt soil, and other projects.