Forest land is the carrier for growing forests. It is of great significance to evaluate the forest land quality scientifically and delineate forestland protection zones reasonably for realizing better forest land management, promoting ecological civilization construction, and coping with global climate change. In this study, taking Hefeng County, Hubei Province, a subtropical humid evergreen broad-leaved forest region in China, as the study area, 14 indicators were selected from four dimensions—climatic conditions, terrain, soil conditions, and socioeconomics—to construct a forest land quality evaluation index system. Based on the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) model, we introduced the Particle Swarm Optimization (PSO) algorithm to design the evaluation model to evaluate the forest land quality and analyze the distribution of forest land quality in Hefeng. Further, we used the Local Indicator of Spatial Association (LISA) to explore the spatial distribution of forest land quality and delineate the forest land protection zones. The results showed the following: (1) the overall quality of forest land was high, with some variability between regions. The range of Forest Land Quality Index (FLQI) in Hefeng was 0.4091–0.8601, with a mean value of 0.6337. The forest land quality grades were mainly first and second grade, with the higher-grade forest land mainly distributed in the central and southeastern low mountain regions of Zouma, Wuli, and Yanzi. The lower-grade forest land was mainly distributed in the northwestern middle and high mountain regions of Zhongying, Taiping, and Rongmei. (2) The global spatial autocorrelation index of forest land quality in Hefeng County was 0.7562, indicating that the forest land quality in the county had a strong spatial similarity. The spatial distribution of similarity types high-high (HH) and low-low (LL) was more clustered, while the spatial distribution of dissimilarity types high-low (HL) and low-high (LH) was generally dispersed. (3) Based on the LISA of forest land quality, forest land protection zones were divided into three types: key protection zones (KPZs), active protection zones (APZs), and general protection zones (GPZs). The forest land protection zoning basically coincided with the forest land quality. Combining the characteristics of self-correlated types in different forestland protection zones, corresponding management and protection measures were proposed. This showed that the PSO-TOPSIS model can be effectively used for forest land quality evaluation. At the same time, the spatial attributes of forest land were incorporated into the development of forest land protection zoning scheme, which expands the method of forest land protection zoning, and can provide a scientific basis and methodological reference for the reasonable formulation of forest land use planning in Hefeng County, while also serving as a reference for similar regions and countries.