We present a study of optical quantum states generated by subtraction of photons from the thermal state. Some aspects of their photon number and quadrature distributions are discussed and checked experimentally. We demonstrate an original method of up to ten photon subtracted state preparation with use of just one single-photon detector. All the states where measured with use of balanced homodyne technique, and the corresponding density matrices where reconstructed. The fidelity between desired and reconstructed states exceeds 99%. Combined with homodyne detection it can also be used for precise measurement of high-order autocorrelation functions.