In this work, we present a highly effective electrode material (AgCoS@MXene) for supercapattery device application that is produced hydrothermally. We examined the morphology and crystallinity of the synthesized materials using SEM and XRD studies. The synthesized compounds were subjected to a thorough electrochemical performance study employing a three-electrode configuration in a 1 M KOH electrolyte. AgCoS@MXene demonstrated an exceptional Qs of 943.22 C/g at a current density of 2.0 A/g. We formed a supercapattery device (AgCoS@MXene//AC) with AgCoS@MXene as the positive electrode and activated carbon (AC) as the negative electrode. The supercapattery device was demonstrated to have a high specific capacity of 315.22 C/g, a power density of 1275 W/kg, and an energy density of 35.94 Wh/kg. In addition, 5000 charging and discharging cycles were used to assess the device's long-term longevity. The findings indicated that the device preserved nearly 82% of its initial capacity. Besides, the hybrid electrode is used for the electrocatalytic activity for the oxygen reduction reaction