2.0 Summary
The Warburg effect describes a heightened propensity of tumor cells to produce lactic acid in the presence or absence of O2. Currently, a generally held notion is that the Warburg effect is related to energy. Using whole-genome, proteomic MALDI-TOF-MS and metabolite analysis, we investigate the Warburg effect in malignant N2a cells. The findings show that the Warburg effect serves a functional role in regulating acidic pericellular pH (pHe), which is mediated by metabolic inversion or a fluctuating dominance between glycolytic-rate-substrate level phosphorylation (SLP) and mitochondrial (mt) oxidative phosphorylation (OXPHOS) to control lactic acid. Alkaline pHe elevated SLP/OXPHOS ratio (approximately 98% SLP/OXPHOS); vs. neutral (approximately 56% SLP/OXPHOS) or acidic (approximately 93 % OXPHOS/SLP). Acidic pHe paralleled greater expression of mitochondrial biogenesis and OXPHOS genes, such as complex III–V (Uqcr10, Atp5, and Cox7c), mt Fmc1, Romo1, Tmem 173, Tomm6, aldehyde dehydrogenase, mt Sod2 adjunct to loss of mt fission (Mff) and mt biogenesis component PPAR-γ co-activator 1. Moreover, acidic pHe corresponded to metabolic efficiency evidenced by a rise in mTOR nutrient sensor GßL, its downstream target (Eif4ebp1), insulin modulators (Trib3,Fetub) and loss of catabolic (Hadhb,Bdh1,Pygl) / glycolytic processes (aldolase C, pyruvate kinase, Nampt and aldose-reductase). In contrast, alkaline pHe initiated loss of mitofusin 2, complex II-IV (Sdhaf1,Uqcrq,Cox4i2,Aldh1l2), aconitase, mitochondrial carrier triple repeat 1 and mt biosynthetic (Coq2,Coq5,Coq9). In conclusion, the Warburg effect may serve as negative feed-back loop which regulates the pHe toward a broad acidic range by altering lactic acid production through inversion of metabolic systems. These effects were independent of change in O2 concentration or glucose supply.