Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Arterial stiffness due to vascular aging is a major indicator during the assessment of cardiovascular risk. In this study, we propose a method for age estimation by applying deep learning to a photoplethysmogram (PPG) for the non-invasive assessment of the vascular age. The proposed deep learning-based age estimation model consists of three convolutional layers and two fully connected layers, and was developed as an explainable artificial intelligence model with Grad-Cam to explain the contribution of the PPG waveform characteristic to vascular age estimation. The deep learning model was developed using a segmented PPG by pulse from a total of 752 adults aged 20–89 years, and the performance was quantitatively evaluated using the mean absolute error, root-mean-squared-error, Pearson’s correlation coefficient, and coefficient of determination between the actual and estimated ages. As a result, a mean absolute error of 8.1 years, root mean squared error of 10.0 years, correlation coefficient of 0.61, and coefficient of determination of 0.37, were obtained. A Grad-Cam, used to determine the weight that the input signal contributes to the result, was employed to verify the contribution to the age estimation of the PPG segment, which was high around the systolic peak. The results of this study suggest that a convolutional-neural-network-based explainable artificial intelligence model outperforms existing models without an additional feature detection process. Moreover, it can provide a rationale for PPG-based vascular aging assessment.
Arterial stiffness due to vascular aging is a major indicator during the assessment of cardiovascular risk. In this study, we propose a method for age estimation by applying deep learning to a photoplethysmogram (PPG) for the non-invasive assessment of the vascular age. The proposed deep learning-based age estimation model consists of three convolutional layers and two fully connected layers, and was developed as an explainable artificial intelligence model with Grad-Cam to explain the contribution of the PPG waveform characteristic to vascular age estimation. The deep learning model was developed using a segmented PPG by pulse from a total of 752 adults aged 20–89 years, and the performance was quantitatively evaluated using the mean absolute error, root-mean-squared-error, Pearson’s correlation coefficient, and coefficient of determination between the actual and estimated ages. As a result, a mean absolute error of 8.1 years, root mean squared error of 10.0 years, correlation coefficient of 0.61, and coefficient of determination of 0.37, were obtained. A Grad-Cam, used to determine the weight that the input signal contributes to the result, was employed to verify the contribution to the age estimation of the PPG segment, which was high around the systolic peak. The results of this study suggest that a convolutional-neural-network-based explainable artificial intelligence model outperforms existing models without an additional feature detection process. Moreover, it can provide a rationale for PPG-based vascular aging assessment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.