Semiconductor materials became a part of nowadays life due to useful applications caused by characteristic properties as variable conductivity and sensitivity to light or heat. Electrical properties of a semiconductor can be modified by doping or by the application of electric fields or light; and from this view, devices made from semiconductors can be used for amplification or energy conversion. The compound semiconductor materials from III-V class experienced a qualitative leap from promising potential to nowadays technologic environment. The III-V semiconductor compounds are the material bases for electronic and optoelectronic devices such as high-electron-mobility transistors (HEMT), bipolar heterostructure transistors, IR light-emitting diodes, heterostructure lasers, Gunn diodes, Schottky devices, photodetectors, and heterostructure solar cells for terrestrial and spatial operating conditions. Among III-V semiconductor compounds, gallium arsenide (GaAs) and gallium antimonide (GaSb) are of special interest as a substrate material due to the lattice parameter match to solid solutions (ternary and quaternary) whose band gaps cover a wide spectral range from 0.8 to 4.3 μm in the case of GaSb. The solid/ solid interfaces could play a key part in the development of microelectronic device technology. In most of the cases, the initial surface of III-V compounds exposed to laboratory conditions is covered usually with native oxide layers. Various techniques for performing the surface cleaning process are used, e.g., controlled chemical etching, in situ ion sputtering, coupled with controlled annealing in vacuum and often these classic techniques are combined in order to prepare an eligible semiconductor surface to be exposed to a technological device chain. The evolution of surface native oxides in different cleaning procedures and the characteristics of as-prepared semiconductor surface were investigated by modern surface investigation techniques, i.e., X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), Rutherford backscattering spectrometry (RBS) combined with electrical characterization. Surface preparation of semiconductors in particular for III-V compounds is a necessary requirement in device technology due to the existence of surface impurities and the presence of native oxides. The impurities can