Recently, there has been a growing demand for healthy processed foods, such as comminuted or gel-type meat and fish products with reduced content of salt (sodium chloride), phosphate (sodium phosphate) and/or fat, while maintaining their texture and quality characteristics. As know, a high intake of dietary sodium is associated with cardiovascular diseases and strokes. On the other hand, high phosphate intake has a potential health risk, especially with regard to bone metabolism, cardiovascular and kidney diseases. High hydrostatic pressure (HHP) technology has been recognized as a useful method for successfully reducing salt, phosphate and/or fat content in processed muscle products. The texture, yield and organoleptic properties of products are closely related to the structure and functionality of myofibrillar proteins (MP). Application of moderate high hydrostatic pressure at 100–200 MPa has been successfully used to increase the functionality of myofibrillar proteins by modifying the structure due to denaturation, solubilization, aggregation or gelation. The ability to reduce sodium content and achieve a high binding and water retention using this technology is an important task for the production of healthy food products.