2019
DOI: 10.18287/2412-6179-2019-43-3-464-473
|View full text |Cite
|
Sign up to set email alerts
|

Study of the classification efficiency of difficult-to-distinguish vegetation types using hyperspectral data

Abstract: The article is devoted to the effectiveness research of methods of controlled spectral and spectral-spatial classification of hyperspectral data. In particular, minimum distance, support vector machine, mahalanobis distance and maximum likelihood methods are considered on the example of vegetative cover types differentiation. Significant attention is paid to studying the dependence of the accuracy of data classification with listed methods on the spectral features number and their selection method. The perspec… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
1
0
1

Year Published

2020
2020
2021
2021

Publication Types

Select...
4
3

Relationship

0
7

Authors

Journals

citations
Cited by 13 publications
(2 citation statements)
references
References 27 publications
0
1
0
1
Order By: Relevance
“…С. А. Лебедева РАН, 119991, Россия, Москва, Ленинский проспект, д. 51, 2 Московский физико-технический институт (национальный исследовательский университет), 141701, Россия, Московская область, г. Долгопрудный, Институтский переулок, д.9…”
Section: исследование применимости сверточной нейронной сети U-netunclassified
“…С. А. Лебедева РАН, 119991, Россия, Москва, Ленинский проспект, д. 51, 2 Московский физико-технический институт (национальный исследовательский университет), 141701, Россия, Московская область, г. Долгопрудный, Институтский переулок, д.9…”
Section: исследование применимости сверточной нейронной сети U-netunclassified
“…Thus, the randomness of the choice of pixels can provide continuous coverage with fewer standards. The same idea in solving other problems can be traced in [2][3][4].…”
Section: Introductionmentioning
confidence: 99%