In this study, Se85Te15−xAgx (x = 3, 6, 9 and 12) chalcogenide glasses were examined for their structure, crystallization kinetics, and physical characteristics. The kinetics of crystallization in these glasses were studied
using various methods. By using the melt quenching process, Se85Te15−xAgx bulk alloys were created. The amorphous nature of the alloys was confirmed using High Resolution X-Ray Diffraction (HRXRD). The crystallization kinetics of the Se85Te15−xAgx
glasses were studied using non-isothermal differential scanning calorimetry (DSC) measurements at heating speeds of 5, 10, 15, 20 and 25 K/min. The different characteristic temperatures, including the glass transition (Tg) and on-set crystallization (Tc)
temperatures, have been determined from a variety of DSC thermograms. Using the Kissinger and Moynihan techniques, the activation energies of the glass transition (ΔEt) were computed.