The curing process of epoxy resin based on epoxidized linseed oil (ELO) is studied using dynamic differential scanning calorimetry (DSC) in order to determine the kinetic triplet (Ea, and A) at different heating rates. The apparent activation energy, Ea, has been calculated by several differential and integral isoconversional methods, namely Kissinger, Friedman, Flynn–Wall–Ozawa (FWO), Kissinger–Akahira–Sunose (KAS) and Starink. All methods provide similar values of Ea (between 66 and 69 kJ/mol), and this shows independence versus the heating rate used. The epoxy resins crosslinking is characterized by a multi-step process. However, for the sake of the simplicity and to facilitate the understanding of the influence of the oxirane location on the curing kinetic, this can be assimilated to a single-step process. The reaction model has a high proportion of autocatalytic process, fulfilling that aM is between 0 and ap and aM < . Using as reference the model proposed by Šesták–Berggren, by obtaining two parameters (n and m) it is possible to obtain, on the one hand, the kinetic parameters and, on the other hand, a graphical comparison of the degree of conversion, α, versus temperature (T) at different heating rates with the average n and m values of this model. The good accuracy of the proposed model with regard to the actual values obtained by DSC gives consistency to the obtained parameters, thus suggesting the crosslinking of the ELO-based epoxy has apparent activation energies similar to other petroleum-derived epoxy resins.